methylamine⁵ (20 ml.). The flask was heated until the temperature of the contents reached about 210°. The residue (viscous brown oil) was cooled, dissolved in hot 95% ethanol, decolorized with Norit A, and filtered. On cooling, 5.5 g. (56%) of white woolly crystals, m.p. 147–150°, was obtained. Two recrystallizations from the same solvent raised the melting point to 154–155° (short woolly needles).

Anal. Caled. for $C_{14}H_{17}NO_{\delta}$: C, 60.21; H, 6.10; N, 5.01. Found: C, 60.32; H, 6.30; N, 5.21.

N-Methyl-2-(3,5-dimethoxy-4-hydroxyphenyl)succinimide (IV).—The reaction was carried out as for III. From I (10 g., 0.037 mole), IV (6.4 g., 66%) was obtained as yellowish white crystals, m.p. 183–186°. Two recrystallizations, using Norit A once for decolorization, raised the melting point to 186–187°, white crystals.

Anal. Caled. for $C_{13}H_{15}NO_5$; C, 58.87; H, 5.66; N, 5.28. Found: C, 58.67; H, 5.76; N, 5.15.

....

(5) C. A. Miller and L. M. Long, J. Am. Chem. Soc., 73, 4895 (1951).

·····

Synthesis of Some Hydroxylamine Derivatives of Pyrimidines and Purines¹

PAULINE K. CHANG

Department of Pharmacology, Yale University School of Medicinc, New Haven, Connecticut

Received July 27, 1965

Because of interest in orotic acid analogs in this laboratory,² 6-N-hydroxylaminouracil (I) and uracil-6-hydroxamic acid (II) have been synthesized. 6-N-Hydroxylaminopurine ribonucleoside (III) was regarded as an analog of adenosine, because 6-Nhydroxylaminopurine³ is active as an analog of both adenine and hypoxanthine.⁴

2,4-Dimethoxy-6-chloropyrimidine^{5.6} failed to react with hydroxylamine; however, the demethylated derivative, 6-chlorouracil,⁷ reacted smoothly with hydroxylamine to give I. Compound II was prepared from methyl orotate,⁸ whereas III was prepared from 6-chloropurine ribonucleoside⁹ and hydroxylamine.

Experimental Section¹⁰

6-N-Hydroxylaminouracil (I).—A solution of KOH (11.2 g., 0.2 nuole) in ethanol (40 nl.) was added to a solution of hydroxylamine hydrochloride (12 g., 0.17 nuole) in boiling ethanol (200 nl.). The precipitated KCl was filtered. 6-Chlorouracil⁷ (1 g., 0.007 mole) was added to the solution of hydroxylamine. The mixture was refluxed for 1 hr. and allowed to cool to room temperature with stirring (1 hr.). The product, which separated as a solid, was washed with water and ethanol to give analytically pure I (0.73 g., 74%), m.p. 280° dec., $\lambda_{max}^{\text{max}} 264 \text{ m}\mu (\epsilon 6250)$. Anal. Calcd. for C₄H₈N₃O₂: C, 33.57, H, 3.52; N, 29.36.

Anal. Calcd. for $C_4H_5N_3O_2$: C, 33.57, H, 3.52; N, 29.36. Found: C, 33.56; H, 3.77; N, 29.25. Uracil-6-hydroxamic Acid (II),---A mixture of methyl orotate⁸

Uracil-6-hydroxamic Acid (II).—A mixture of methyl orotate⁸ (1.25 g., 0.0074 mole), NH₂OH·HCl (1.4 g., 0.02 mole), and water (10 ml.) was cooled to 0°. With stirring, NaOH (12.5 N, 3.6 ml.) was added to the mixture dropwise at 3°. The now clear solu-

- (5) H. J. Fisher and T. B. Johnson, J. Am. Chem. Soc., 54, 727 (1932).
- (6) S. B. Greenbaum and W. L. Holmes, *ibid.*, **76**, 2899 (1954).
 (7) J. P. Horwitz and A. J. Tomson, *J. Org. Chem.*, **26**, 3392 (1962).
- (8) J. J. Fox, N. Yung, and I. Wempen, Biochem. Biophys. Acta, 23, 295 (1957).
- (9) B. R. Baker, K. Hewson, H. J. Thomas, and J. A. Johnson, Jr., J. Org. Chem., 22, 954 (1957).

tion was adjusted to pH 5 with concentrated HCl. Crude 11, which separated out as a yellow solid, was recrystallized from water to yield the monohydrate (1.2 g., 86°), m.p. 250° dec., $\lambda_{max}^{\text{pH2}}$ 274 m μ (ϵ 7420). It was recrystallized twice from water to give the analytical sample.

Anal. Calcd. for $C_5H_5N_3O_4 \cdot H_2O$ [sample dried at 60° (0.1 nm.)]: C, 31.75; H, 3.73; N, 22.22. Found: C, 31.72; H, 3.99; N, 22.29. Calcd. for $C_5H_5N_3O_4$ [sample dried at 120° (0.1 nm.)]: C, 35.10; H, 2.95; N, 24.56. Found: C, 35.22; H, 3.15; N, 24.37.

6-N-Hydroxylamino-9- β -D-ribofuranosylpurine (III).—To a solution of hydroxylamine hydrochloride (0.7 g., 0.01 mole) in boiling ethanol (10 ml.) was added a solution of KOH (0.56 g., 0.01 mole) in ethanol (3 ml.). The precipitated KCl was filtered. 6-Chloro-9- β -D-ribofuranosylpurine^{9.41} (0.286 g., 0.002 mole), dissolved in ethanol (20 ml.), was added to the solution of NH₂OH. The mixture was refluxed for 1 hr. and then concentrated *in vacuo* at 40°. The residue (412 mg.) was recrystallized from hot ethanol to yield the pure product (200 mg., 70%), m.p. 195° dec., $\lambda_{max}^{\text{PR}} 262.5 \text{ m}\mu$ (ϵ 16,700). The analytical sample was recrystallized once more from ethanol.

Anal. Calcd. for $C_{16}H_{18}N_5O_5;\ C,\ 42.40;\ H,\ 4.63;\ N,\ 24.72,$ Found: C, $42.42;\ H,\ 4.77;\ N,\ 24.94.$

(11) Purchased from Cyclo Chemical Corp., Los Angeles, Calif.

Quinoxaline Sulfonamides

S. H. DANDEGAONKER AND C. K. MESTA

Department of Chemistry, Karnatak University, Dharwar, India

Received June 16, 1965

The development of the field of chemotherapy has more recently led to a renewed interest in the quinoxalines in connection with their potential values as pharmaceuticals.¹⁻⁵ We have synthesized some halogenated quinoxaline sulfonamides in view of the reported effect of chlorine atoms on the activity of quinoxalines.⁶

Sulfonamides on condensation with 2,3-dichloroquinoxaline using the procedure of Wolf, *et al.*,⁴ gave disulfonamide derivatives when 2 moles of sulfonamide was used, and a mixture of predominantly mono- and small amounts of disulfonamides when 1 mole of sulfonamide was employed. The reaction of sulfanilamide and 2,3-dichloroquinoxaline confirmed the findings of Wolf and co-workers⁷ and Platt and Sharp⁸ that the free amino group does not take part in condensation.

2,3-Dichloroquinoxaline on reaction with benzamide in different ratios gave only 2,3-dibenzamidoquinoxaline under similar conditions. Acetamide, on heating with dichloroquinoxaline at 130° or refluxing in ethanol, afforded a mixture of products, with or without chlorine. Interaction of sodamide with dichloroquinoxaline in boiling toluene either in a stoichiometric ratio or with an excess gave a mixture of unidentifiable products.

Experimental Section

2,3-Dihydroxyquinoxaline⁹ (91%), white needles, m.p. 320° ; 2,3-dichloroquinoxaline¹⁰ (75%), colorless shining long needles,

- (2) O. Gawron, and P. E. Spoerri, J. Am. Chem. Soc., 67, 514 (1945).
- (3) R. H. Mizzoni and P. E. Spoerri, *ibid.*, 67, 1652 (1945).
- (4) K. Pfister, III, A. P. Sullivan, J. Weijlard, and M. Tishler, ibid.,
- 73, 4955 (1951).
 (5) J. Weijlard and M. Tishler, U. S. Patent 2,404,199 (July 16, 1946);
- Chem. Abstr., 40, 6100 (1946).
 (6) A. F. Crowther, F. H. S. Curd, D. G. Davey, and G. S. Stacey, J.
- Chem. Soc., 1260 (1949).
 (7) F. J. Wolf, K. Pfister, III, R. H. Beutal, R. M. Wilson, C. A. Robinson, and J. R. Stevens, J. Am. Chem. Soc., 71, 6 (1949).
 - (8) B. C. Platt and T. M. Sharp, J. Chem. Soc., 2129 (1948).
 - (9) M. A. Phillips, *ibid.*, 1143 (1931); 2393 (1928).
 - (10) O. Hinsberg and J. Pollak, Ber., 29, 784 (1896).

⁽¹⁾ This work was supported by a grant (CA-02817) from the National Cancer Institute, U. S. Public Health Service.

⁽²⁾ R. E. Handschumacher, Cancer Res., 23, 643 (1963).

⁽³⁾ A. Giner-Sorolla and A. Bendich, J. Am. Chem. Soc., **80**, 3932 (1958).
(4) A. C. Sartorelli, A. L. Bieber, P. K. Chang, and G. A. Fischer, Biochem. Pharmacol., **13**, 507 (1964).

⁽¹⁰⁾ Melting points were determined in a capillary tube in a copper block and are corrected. Microanalyses were performed by Schwarzkopf Microanalytical Laboratories, Woodside, N. Y., and by Midwest Microlah. Inc., Indianapolis, Ind.

⁽¹⁾ R. M. Acheson, J. Chem. Soc., 4731 (1956).